
INTRODUCTION

1.1 GENERAL

This project involves development of a Web Application which provides a platform to users to

control display of a device which shows the information that includes calendar events, to-do

tasks, etc. The ultimate goal of this project is to make a dynamic web-app which would display

the contents specified by the user which would help the user to get updated with event and to

work efficiently. The concept of Web Application is widely used and information is available

from various sources but this information is not available at right time and at the right place.

1.2 WEB-APP

Web Application are not real applications; they are really websites that, in many ways, look

and feel like native applications, but are not implemented as such. They are run by a browser

and typically written in HTML5. Users first access them as they would access any web page:

they navigate to a special URL and then have the option of “installing” them on their home

screen by creating a bookmark to that page. Web apps became really popular when HTML5

came around and people realized that they can obtain native-like functionality in the browser.

Today, as more and more sites use HTML5, the distinction between web apps and regular

web pages has become blurry

Information can be obtained from various sources like Google, Facebook, Twitter, etc. The

Web Application aims to collect this information from various sources, understand this

information and provide user the relevant information. The user has the ability to control the

Web Application, the Web Application provides user with a Graphical User Interface (GUI)

which includes options to display specified content to the display device. [1]

1.3 WEB-SERVICES

A web service is a collection of open protocols and standards used for exchanging data

between applications or systems. Software applications written in various programming

languages and running on various platforms can use web services to exchange data over

computer networks like the Internet in a manner similar to inter-process communication on a

single computer. This interoperability (e.g., between Java and Python, or Windows and Linux

applications) is due to the use of open standards.

1

We aim to use RESTful web services for the development of Digiframe. REST, an

architectural style of shaping web services which describes the act of transferring a state of

something by its representation. The representation of data can be done using XML or JSON

which are two standardized and easy ways to handle, transfer and represent data. We will be

using JSON representation in for Digiframe as JSON provides a more compact and easy

representation of data. Another reason behind using JSON is, it is a subset of JavaScript and

hence it will be more compatible with the web application.

The main advantage of REST is that it totally separates the user interface from the server and

the data storage. The separation between client and server has one evident advantage, and that

is that each development team can scale the product without too much problem.

1.4 HARDWARE DEVICES

The key element of this project is Raspberry Pi which acts as a server that receives the data from

the Web Application, processes this data and provides content to display device which have a

Universal Serial Bus (USB) or High-Definition Multimedia Interface (HDMI) port. The server

receives the data in format encoded by MQTT. MQTT is an open message protocol for machine-

to-machine (M2M) or Internet of Things (IoT) communications that enables the transfer of

telemetry-style data (i.e. measurements collected in remote locations) in the form of messages

from devices and sensors, along unreliable or constrained networks, to a server. Andy Stanford-

Clark of IBM, and Arlen Nipper of Cirrus Link Solutions invented the protocol.

1.4.1 RASPBERRY PI

The Raspberry Pi is a series of credit card-sized single-board computers developed in the

United Kingdom by the Raspberry Pi Foundation to promote the teaching of basic computer

science in schools and developing countries.

The Raspberry Pi hardware has evolved through several versions that feature variations in

memory capacity and peripheral-device support.

2

LITRATURE REVIEW

2.1 INTERNET OF THINGS

The internet of things is the network of physical objects or “things”. The IoT transforms these

objects from being traditional too smart by exploiting its underlying technologies [1]. Internet

of things allows objects to be sensed and controlled remotely across existing network

infrastructure, creating opportunities for more direct integration between the physical world

and computer based systems and resulting in improved efficiency, accuracy, and economic

benefit.

Each thing is uniquely identifiable through its embedded computing system but is able to

interoperate within the existing Internet infrastructure experts estimate that the IoT will

consist of almost 50 billion objects by 2020.[2]

2.2 SMART DISPLAY SCREENS USING IOT

One of the several attempts in Internet of things applications include the development of a

display panel powered by an Arduino device or a raspberry pi device. These type of

applications typically include digital notice boards, digital wall calendars, digital photo

frames also called as raspberry pi media panel. These application generally serve one of these

purposes. The data to be displayed on such a screen is generally kept local to the screen in

case it is powered by a raspberry pi device which can support a small amount of secondary

memory. There are smart screen systems for which the data to be displayed on the screen is

managed remotely. The values are set remotely through SMS based system incorporating the

widely used GSM to facilitate the communication [3] or a traditional socket programming

model is used for the communication [4].

2.3 MQTT PROTOCOL

MQTT is an open message protocol for machine-to-machine (M2M) or Internet of Things

(IoT) communications that enables the transfer of telemetry-style data (i.e. measurements

collected in remote locations) in the form of messages from devices and sensors, along

unreliable or constrained networks, to a server.

3

MQTT protocol is created in the late 1990s by Andy Stanford-Clark of IBM and Arlen

Nipper, then of Arcom Control Systems. It runs over TCP/IP. The current version of MQTT is

3.1.1. Its primary goals are:

to avoid polling of sensors, allowing data to be sent to interested parties the moment it is

ready lightweight, so that it can be used on very low bandwidth connections

MQTT’s strengths are simplicity, a compact binary packet payload (compressed headers,

much less verbose than HTTP), and it makes a good fit for simple push messaging scenarios

such as temperature updates, stock price tickers, oil pressure feeds or mobile notifications. It

also works well connecting constrained or smaller devices and sensors to the enterprise, such

as connecting an Arduino device to a web service, for example.[8] Features of the protocol

include:

The publish/subscribe message pattern to provide one-to-many message distribution

and decoupling of applications

A messaging transport that is agnostic to the content of the

payload The use of TCP/IP to provide basic network connectivity

MQTT supports three quality of service levels, “Fire and forget”, “delivered at least

once” and “delivered exactly once”.

A small transport overhead (the fixed-length header is just 2 bytes), and protocol

exchanges minimised to reduce network traffic

A mechanism to notify interested parties to an abnormal disconnection of a client

using the Last Will and Testament feature.[5]

2.3.1 THE PUBLISH/SUBSCRIBE PATTERN

It follows a publish/subscribe architecture, as shown in Figure , where the system consists of

three main components: publishers, subscribers, and a broker. From IoT point of view,

publishers are basically the lightweight sensors that connect to the broker to send their data

and go back to sleep whenever possible. Subscribers are applications that are interested in a

certain topic, or sensory data, so they connect to brokers to be informed whenever new data

are received. The brokers classify sensory data in topics and send them to subscribers

interested in the topics. [6]

4

Fig 2.1: MQTT ARCHITECTURE. [9]

2.3.1.1 SCALABILITY

Pub/Sub also provides a greater scalability than the traditional client-server approach. This is

because operations on the broker can be highly parallelized and processed event-driven. Also

often message caching and intelligent routing of messages is decisive for improving the

scalability. But it is definitely a challenge to scale publish/subscribe to millions of

connections. This can be achieved using clustered broker nodes in order to distribute the load

over more individual servers with load balancers. [6]

2.3.2 CLIENT, BROKER AND CONNECTION ESTABLISHMENT

2.3.2.1 CLIENT

A MQTT client can be both a publisher & subscriber at the same time. A MQTT client is any

device from a micro controller up to a full-fledged server, that has a MQTT library running

and is connecting to an MQTT broker over any kind of network. This could be a really small

and resource constrained device that is connected over a wireless network and has a library

strapped to the minimum or a typical computer running a graphical MQTT client for testing

purposes, basically any device that has a TCP/IP stack and speaks MQTT over it. MQTT

client libraries are available for a huge variety of programming languages, for example

Android, Arduino, C, C++, C#, Go, iOS, Java, JavaScript, .NET.[7]

5

2.3.2.2 BROKER

A broker (Server) can handle up to thousands of concurrently connected MQTT clients. The

broker is primarily responsible for receiving all messages, filtering them, decide who is

interested in it and then sending the message to all subscribed clients. It also holds the session

of all persisted clients including subscriptions and missed messages . Another responsibility

of the broker is the authentication and authorization of clients. And at most of the times a

broker is also extensible, which allows to easily integrate custom authentication,

authorization and integration into backend systems.[7]

2.3.2.3 MQTT CONNECTION

The MQTT protocol is based on top of TCP/IP and both client and broker need to have a

TCP/IP stack.

Fig 2.2: IoT LAYERS (MQTT)

The MQTT connection itself is always between one client and the broker, no client is connected

to another client directly. The connection is initiated through a client sending a CONNECT

message to the broker. The broker response with a CONNACK and a status code. Once

the connection is established, the broker will keep it open as long as the client doesn’t send a

disconnect command or it loses the connection.[7]

Fig 2.3: MQTT CONNECTION

6

2.3.3 TOPICS

A topic is a UTF-8 string, which is used by the broker to filter messages for each connected

client. A topic consists of one or more topic levels. Each topic level is separated by a forward

slash (topic level separator).

Fig 2.4: TOPICS IN MQTT

In comparison to a message queue a topic is very lightweight. There is no need for a client to

create the desired topic before publishing or subscribing to it, because a broker accepts each

valid topic without any prior initialization.

2.3.4 APPLICATION LEVEL QoS

Three qualities of service for message delivery:

"At most once", where messages are delivered according to the best efforts of the

underlying TCP/IP network. Message loss or duplication can occur. This level could

be used, for example, with ambient sensor data where it does not matter if an

individual reading is lost as the next one will be published soon after.

"At least once", where messages are assured to arrive but duplicates may occur.

"Exactly once", where message are assured to arrive exactly once. This level could be

used, for example, with billing systems where duplicate or lost messages could lead to

incorrect charges being applied.[5]

2.3.5 SECURITY

MQTT brokers may require username and password authentication from clients to connect.

To ensure privacy, the TCP connection may be encrypted with SSL/TLS.

7

2.4 REST

REST stands for Representational State Transfer. It relies on a stateless, client-server,

cacheable communications protocol -- and in virtually all cases, the HTTP protocol is used.

REST is an architecture style for designing networked applications. The idea is that, rather

than using complex mechanisms such as CORBA, RPC or SOAP to connect between

machines, simple HTTP is used to make calls between machines.

RESTful applications use HTTP requests to post data (create and/or update), read data (e.g.,

make queries), and delete data. Thus, REST uses HTTP for all four CRUD

(Create/Read/Update/Delete) operations.

REST is a lightweight alternative to mechanisms like RPC (Remote Procedure Calls) and

Web Services (SOAP, WSDL, et al.). Later, we will see how much more simple REST is. As

a programming approach, REST is a lightweight alternative to Web Services and RPC. Much

like Web Services, a REST service is:

Platform-independent (you don't care if the server is Unix, the client is a Mac, or

anything else),

Language-independent (C# can talk to Java, etc.),

Standards-based (runs on top of HTTP), and

Can easily be used in the presence of firewalls. [14]

8

PROPOSED WORK

3.1 OBJECTIVES

To create an interface in hybrid app for generating events.

To create an interface in hybrid app for adding images.

To prepare the REST services in Java.

To create message communication between mobile app and Raspberry Pi.

Consume calendar data on Raspberry Pi.

Consume image(s) data on Raspberry Pi.

Process and display calendar data on remote display device.

Process and display image(s) data on remote display device.

3.2 METHODOLOGY

The DIGIFRAME system flow can be bifurcated into the following components:

1 User Web-App

The user Web-App accepts data from user in the form of event(s) and/or image(s).

The user has multiple options which would give access to various features

(calendar, to-do list etc.) that would be shown on the display device. The user can

create and update tasks using the Web-App.

2 MQTT Broker

The MQTT broker which resides on raspberry pi is responsible for accepting the

data under various topics which calendar and images in our project. Whenever the

subscriber subscribes to a topic, the broker forwards the message under that topic

to the subscriber.

3 Display Device

The display device is connect to raspberry pi circuit. The subscriber receives the

data from the MQTT broker, processes it and displays it on remote display device.

9

3.3 FEATURES

Real-time transfer of data.

No size restriction on amount of data.

Uniform display on remote display device irrespective of screen size.

10

SYSTEM DESIGN

4.1 OVERVIEW

We present the architecture and design of the proposed system which is based on the publish-

subscribe pattern of MQTT protocol which works at real-time. The data does not get sored

anywhere it is just transmitted from the publisher to the subscriber.

4.2 ARCHITECTURE

From a top view, Dexter has been proposed as a system consisting of three main components

1. User Web-App (Publisher)

2. Remote Display (subscriber)

4.2.1 USER WEB APP

The User Web-App provides a Graphical User Interface (GUI) that has multiple tabs which

would give access to various features (calendar, to-do list etc.) that would be shown on the

display device. The user can create and update tasks using the Web-App. User app is

responsible for accepting data from the user and providing the interface to the user in order to

manipulate the data to control what is going to be displayed on the screen. The user app can

be accessed from any computing device connected to the internet so as to control what is

going to be displayed on the screen.

The web services deployed on the tomcat server are responsible to handle the user requests

and perform the operation on the resources. The RESTful web services represent the user

data as resources and performs the CRUD operations on them. The state of resources is

transferred using the JSON format through MQTT protocol.

4.2.2 REMOTE DISPLAY

In the MQTT terms, the data is published from the user end and it is subscribed at the other

end that is the remote display. The remote display is powered by a raspberry pi where the

MQTT Broker runs. The broker is responsible to consume the data.

The subscriber connects to the broker and subscribes to certain topics so as to access the data

under that topic and process that data in order to display it on the screen.

11

4.3 DATA FLOW DIAGRAM

Fig 4.1: DATA FLOW DIAGRAM

12

IMPLEMENTATION

5.1 HARDWARE REQUIREMENTS
5.1.1 RASPBERRY PI

The Raspberry Pi is a series of credit card-sized single-board computers developed in

the United Kingdom by the Raspberry Pi Foundation to promote the teaching of

basic computer science in schools and developing countries.[12]

5.1.1.1 Hardware

Fig 5.1: RASPBERRY PI SPECIFICATIONS

5.1.1.2 Processor

The Raspberry Pi 3 uses a Broadcom BCM2837 system on chip with a 1.2 GHz 64-bit quad-

core ARM Cortex-A53 processor, with 512 KB shared L2 cache. [12]

13

https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Developing_countries
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/United_Kingdom

5.1.1.3 RAM

The Raspberry Pi 2 and the Raspberry Pi 3 have 1 GB of RAM. The Raspberry Pi Zero has

512 MB of RAM. [12]

5.1.1.4 NETWORKING

On the Model B and B+ the Ethernet port is provided by a built-in USB Ethernet adapter

using the SMSC LAN9514 chip. The Raspberry Pi 3 is equipped with 2.4 GHz WiFi 802.11n

(150 Mbit/s) and Bluetooth 4.1 (24 Mbit/s) in addition to the 10/100 Ethernet port.[12]

5.1.1.5 PERIPHERALS

The Raspberry Pi may be operated with any generic USB computer keyboard and mouse. [12]

5.1.1.6 VIDEO

The video controller can emit standard modern TV resolutions, such as HD and Full HD, and

higher or lower monitor resolutions and older standard CRT TV resolutions. As shipped (i.e.,

without custom overclocking) it can emit these: 640×350 EGA; 640×480 VGA;
800×600 SVGA; 1024×768 XGA; 1280×720 720p HDTV; 1280×768 WXGA variant;

1280×800 WXGA variant; 1280×1024 SXGA; 1366×768 WXGA variant;

1400×1050 SXGA+; 1600×1200 UXGA; 1680×1050 WXGA+; 1920×1080 1080p HDTV;

1920×1200 WUXGA.[12]General purpose input-output (GPIO) connector

Fig 5.2: General purpose input-output

14

https://en.wikipedia.org/wiki/High-definition_television#High-definition_display_resolutions
https://en.wikipedia.org/wiki/1080p
https://en.wikipedia.org/wiki/WXGA%2B
https://en.wikipedia.org/wiki/UXGA
https://en.wikipedia.org/wiki/SXGA%2B
https://en.wikipedia.org/wiki/Graphic_display_resolutions#WXGA
https://en.wikipedia.org/wiki/SXGA
https://en.wikipedia.org/wiki/Graphic_display_resolutions#WXGA
https://en.wikipedia.org/wiki/Graphic_display_resolutions#WXGA
https://en.wikipedia.org/wiki/High-definition_television#High-definition_display_resolutions
https://en.wikipedia.org/wiki/720p
https://en.wikipedia.org/wiki/XGA
https://en.wikipedia.org/wiki/Super_video_graphics_array
https://en.wikipedia.org/wiki/Video_Graphics_Array
https://en.wikipedia.org/wiki/Enhanced_Graphics_Adapter
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Computer_keyboard
https://en.wikipedia.org/wiki/Bluetooth_4.1

5.1.1.7 POWER SUPPLY

The Raspberry Pi 3 is powered by a +5.1V micro USB supply. Typically, the model B uses

between 700-1000mA depending on what peripherals are connected. The maximum power

the Raspberry Pi can use is 1 Amp. The power requirements of the Raspberry Pi increase as

more interfaces are used on the Raspberry Pi. The GPIO pins can draw 50mA safely,

distributed across all the pins; an individual GPIO pin can only safely draw 16mA. The

HDMI port uses 50mA, the camera module requires 250mA, and keyboards and mice can

take as little as 100mA.[13]

5.1.1.8 OPERATING SYSTEM

The Raspberry Pi primarily uses Raspbian, a Debian-based Linux operating system. Other

third party operating systems available via the official website include Android Things(by

Google),Ubuntu MATE, Snappy Ubuntu Core, Windows 10 IoT Core and RISC OS. Many

other operating systems can also run on the Raspberry Pi.[13]

5.2 SOFTWARE REQUIREMENTS

5.2.1 RASPBIAN OS

Raspbian is a free operating system based on Debian optimized for the Raspberry Pi

hardware. An operating system is the set of basic programs and utilities that make the

Raspberry Pi run. However, Raspbian provides more than a pure OS: it comes with over

35,000 packages, pre-compiled software bundled in a format for easy installation on the

Raspberry Pi. [13] Raspbian is highly optimized for the Raspberry Pi line's low-performance

ARM CPUs. Raspbian uses PIXEL, Pi Improved Xwindows Environment, and Lightweight

as its main desktop environment.

5.2.1 MOSQUITTO BROKER

Mosquitto is an open source message broker that implements the MQ Telemetry Transport

(MQTT) protocol. A broker in MQTT handles receiving published messages and sending

them on to any clients who have subscribed.

15

http://mqtt.org/
http://mqtt.org/
http://mosquitto.org/
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/w/index.php?title=Snappy_Ubuntu_Core&action=edit&redlink=1
https://en.wikipedia.org/wiki/Ubuntu_MATE
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Raspbian

5.2.1.1 SCOPE

The Mosquitto project provides a small server implementation of the MQTT and MQTT-SN

protocols. Small means that: only necessary function is included (conditional compilation can be

used to be able to omit unneeded function for a particular application), that function is coded as

efficiently as possible, the externals are as simple as possible for the function provided. The

server has the following features, which are not described in the MQTT specification:

An MQTT bridge, to allow Mosquitto to connect to other MQTT servers.

The ability to secure communications using SSL/TLS.

User authorization - the ability to restrict user access to MQTT topics.[11]

5.2.1.2 DESCRIPTION

Mosquitto provides a lightweight server implementation of the MQTT and MQTT-SN

protocols, written in C. The reason for writing it in C is to enable the server to run on

machines which do not even have capacity for running a JVM. Sensors and actuators, which

are often the sources and destinations of MQTT and MQTT-SN messages, can be very small

and lacking in power. This also applies to the embedded machines to which they are

connected, which is where Mosquitto could be run.

As well as accepting connections from MQTT client applications, Mosquitto has a bridge

which allows it to connect to other MQTT servers, including other Mosquitto instances. This

allows networks of MQTT servers to be constructed, passing MQTT messages from any

location in the network to any other, depending on the configuration of the bridges. [11]

5.2.3 APACHE TOMCAT SERVER

Apache Tomcat, often referred to as Tomcat Server, is an open-source Java Servlet Container

developed by the Apache Software Foundation (ASF). Tomcat implements several Java EE

specifications including Java Servlet, JavaServer Pages (JSP), Java EL, and WebSocket, and

provides a "pure Java" HTTP web server environment in which Java code can run. It

basically make our Java Web applications to run on host and server based system and it is

configured on local host port 8080.

There is a built in web container called Catalina in the tomcat bin directory. It loads all http

related request and has privilege to instantiate the GET and POST method's object.

It also uses cynote I.e an http connector through network layer of the computer. All the

execution is managed by JSP engine.

16

https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/Unified_Expression_Language
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/Java_Servlet
https://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Servlet_container
https://en.wikipedia.org/wiki/Servlet_container

5.3 IMPLEMENTATIONN DETAILS

5.3.1 USER WEB-APP

Here is the view of the user app of Dexter which the user might see the first time he uses this

system. It gives the user the option to choose what the user wants to send to the remote

screen, which can either be images or calendar events.

Fig 5.3 USER WEB-APP

17

5.3.2 CALENDAR EVENTS

The user can create calendar events by specifying 3 parameters that is event description, start

time of the event and the end time of the event. The user can view the existing events right

below the event creation interface. The user can update or delete existing events and once

satisfied he can hit the send button.

In the backend as the REST architecture is used, the calendar event is handled as a resource

which is a plain java object. The Create, read, update and delete operations are performed on

this resource using various http methods. The resource class consumes and produces the data

whereas the service class performs the actual operation on the resource.

The event resource is represented in json format in order to be used during communication.

When the user hits the send button, this json representation is converted into bytes and it is

published via MQTT protocol.

Fig 5.4: CREATING A NEW EVENT Fig 5.5: UPDATING AN EXISTING EVENT

18

5.3.3 IMAGES

The user can select one or more images to be displayed on the display screen. User can add as

many images as needed also the images can be deleted before sending if required. When the

user is satisfied with the image input, he can hit the send button.

The images are then handed over to a java servlet which responsible to convert the images

into bytes and publish them via MQTT protocol.

It is important to convert the data to be published into bytes because it needs to be set as the

payload for MQTT message and MQTT requires it payload to be in bytes only.

Fig 5.6: ADDING ONE IMAGE Fig 5.7: ADDING MULTIPLE IMAGES

19

5.3.4 RASPBERRY PI AND REMOTE DISPLAY DEVICE

The mosquitto (MQTT broker) resides in the raspberry pi which consumes the data sent by

the publisher under a topic (image/calendar) in the form of byte array which is payload of

MQTT messages and displays it on remote display device.

5.3.4.1 CALENDAR EVENTS

The publisher publishes the calendar events in the form of JSON object, which is in turn

converted into byte array. This byte array is then set as payload of the MQTT message and then

sent to the mosquitto broker by the publisher. The subscribe extracts the payload of the MQTT

message which is a JSON object (calendar events) encoded as byte array. This JSON object is

stored in a JSON file which is read by the javascript file present on raspberry pi. After the data is

processed by the javascript program it is displayed on the remote display device.

FIG 5.8: CALENDAR VIEW

20

5.3.4.1 IMAGES

The publisher reads the image(s) uploaded in the form of Buffered image which is converted

into byte array. . This byte array is then set as payload of the MQTT message and then sent to

the mosquitto broker by the publisher. The subscribe extracts the payload of the MQTT

message which is a byte array.

This byte array is converted into Buffered image, stored on the raspberry pi and then

displayed on remote display device.

Fig 5.9: IMAGE VIEW

21

5.4 METHODS IMPLEMENTED

5.4.1 ECLIPSE PAHO JAVA CLIENT

The Paho Java Client is an MQTT client library written in Java for developing applications

that run on the JVM or other Java compatible platforms such as Android.

The Paho Java Client provides two APIs: MqttAsyncClient provides a fully asychronous API

where completion of activities is notified via registered callbacks. MqttClient is a synchronous

wrapper around MqttAsyncClient where functions appear synchronous to the application. [10]

org.eclipse.paho.client.mqttv3 Description

The package contains a programming interface enabling applications to communicate with an

MQTT server.

The basic means of operating the client is:

1. Create an instance of MqttClient or MqttAsyncClient, providing the address of an

MQTT server and a unique client identifier

2. Connect to the server.

3. Exchange messages with the server:

Publish messages to the server specifying a topic as the destination on the server

Subscribe to one more topics. The server will send any messages it receives on

those topics to the client. The client will be informed when a message arrives

via a callback

4. disconnect from the server.[5]

The programming model and key concepts:

Every client instance that connects to an MQTT server must have a unique

client identifier. If a second instance of a client with the same ID connects to a

server the first instance will be disconnected.

When subscribing for messages the subscription can be for an absolute topic

or a wildcarded topic.

When unsubscribing the topic to be unsubscribed must match one specified on

an earlier subscribe.

There are two MQTT client libraries to choose from:

22

o MqttAsyncClient which provides a non-blocking interface where methods

return before the requested operation has completed. The completion of the

operation can be monitored by in several ways:
 Use the waitForCompletion call on the token returned from the

operation. This will block until the operation completes.
 Pass a IMqttActionListener to the operation. The listener will then be

called back when the operation completes.
 Set a MqttCallback on the client. It will be notified when a message

arrives, a message have been delivered to the server and when the
connection to the server is lost.

o MqttClient where methods block until the operation has completed.
For both the blocking and non-blocking clients some operations are
asynchronous. This includes:

o Notification that a new message has arrived: messageArrived.
o Notification that the connection to the server has broken: connectionLost.
o Notification that a message has been delivered to

the server: deliveryComplete.
o A client registers interest in these notifications by registering

a MqttCallback on the client.
MqttConnectOptions can be used to override the default connection options. This
includes:

o Setting the cleansession flag
o Specifying a list of MQTT servers that the client can attempt to connect to
o Set a keepalive interval
o Setting the last will and testament
o Setting security credentials.[5]

23

TESTING AND RESULTS

6.1 AIM OF TESTING

The main aim of testing is to analyze the performance and to evaluate the errors that occur

while the program is executed with different input sources and running in different operating

environment the meaning of testing in this project is to find if it works well with different

shapes and sizes of inputs while publishing as well as well subscribing the data

6.2 ARTIFACTS OF TESTING

For testing the application the testing process produces several Artifacts the different Artifacts
are

6.2.1 TEST PLAN

Test plan gives us the process of testing the subject of application called as the test process
the developers executed test plan and the results are used for the purpose of Management and
future development.

6.6.2 TRACEABILITY MATRIX

Traceability matrix is a table that links design documents to the text documents. This also
changes the test processes when the source documents are changed.

6.2.3 TEST CASE

A test case consists of unique identifier identifies the requirements of the project from the
design phase have information about the series of steps like input output expected result and
actual result the series of steps are stored in the text document or Excel spreadsheet.

6.2.4 TEST SUITE

Test Suite is a collection of test cases the test case Suite answers of the detailed instruction
and the role of each collection of test cases

6.2.5 TEST DATA

The place where the test values and components can be modified is known as test data

24

6.2.6 TEST HARNESS

The test harness is a collection of hardware software input output and configuration used for
the application

6.3 TYPES OF TESTING USED
There are two types of testing basically Alpha testing and beta testing

6.3.1 ALPHA TESTING
Alpha testing performed by testers at developers site it involves both white and black box
testing mostly critical issues of excess can be addressed immediately in an Alpha testing

6.3.2 BETA TESTING

Beta testing is performed by Client or end users at client location it uses only black box
testing beta testing will be implemented in future versions of the product by using the end
user's feedback

We have used Alpha testing for testing for evaluating our project

6.4 LEVELS OF TESTING

6.4.1 UNIT TESTING

This level of testing has been used in our project where our concentration was on each

component of the software has implemented in the source code

6.4.2 INTEGRATION TESTING

This type of testing focuses on design and construction of the software architecture and it’s all

components and checked the working this we used at the time of design and implementation

25

6.4.3 VALIDATION TESTING

This type of testing provides final Assurance that the software meets all functional behavioral
and performance requirements.

6.4.4 SYSTEM TESTING

Verify the software and other system and events as a whole

6.5 TYPES OF TESTING

Black box testing is the testing approach which tells about the possible combinations of the
end user action black box testing doesn't need the knowledge about interior connections or
programming course in the black box testing the end user's test the application by giving
different sources and checks whether the output for the specified input is appropriate or not

White box testing is also known as glass box or clean box or open box testing it is opposite to
the black box testing and whitebox testing we can create test cases by checking the court and
executing in certain intervals and know the potential errors the analysis of the code can be
done by giving suitable inputs for specified applications and using the source code for
application blocks the white box testing applies to unit testing system testing and integration
testing these are approaches are used in final implementation and validation of our project
basically white box testing was used in our project that is Dexter where we created our test
cases and check the code at each interval

26

6.6 TEST CASES

6.6.1 TEST CASE: CALENDAR MODULE

In the calendar module, when we need to add any event we need to add description to the
event, the start time of the event and the end time of the event.

Fig 6.1: NO CALENDAR DATA Fig 6.2: CALENDAR ALERT

6.6.1.1 EXPECTED RESULT

The user must be informed that he or she has left the some information unfiled.

6.6.1.2 ACTUAL RESULT

If any information is left blank then an alert is generated indicating that the field is left blank.

27

6.6.2 TEST CASE: IMAGE MODULE

In the image module the user need to select an image file to be sent to the remote display

device, a user may select one or more images.

Fig 6.3: MULTIPLE IMAGES Fig 6.4: IMAGE ALERT

6.6.2.1 EXPECTED RESULT

The user must be informed that he or she has not selected any image.

6.6.2.2 ACTUAL RESULT

If the image is not selected then an alert is generated to select an image.

28

6.6.3 TEST CASE: SENDING DATA

When data is sent to remote display device, the input from the user must be checked whether

the data is present or not.

Fig 6.5 SENDING ALERT1 Fig 6.6 SENDING ALERT2

6.6.3.1 EXPECTED RESULT

The user must be informed that he or she has not selected any data to send.

6.6.3.2 ACTUAL RESULT

If the data is not present then an alert is generated which tells the user to input the data.

29

6.6.4 TEST CASE: PUBLISHING DATA

When the user wants to publish the data to remote display device, the raspberry pi must be

active (connected to broker). If the receiver (raspberry pi) is offline or it can’t receive data

then a webpage is opened which tells remote display device can’t receive data.

Fig 6.7 PUBLISHING ALERT

6.6.4.1 EXPECTED RESULT

The user must be informed that the receiver (raspberry pi)) is offline or it can’t receive data.

6.6.4.2 ACTUAL RESULT

If the receiver (raspberry pi) is offline or it can’t receive data then a webpage is opened which

tells remote display device can’t receive data.

.

30

CONCLUSION AND FUTURE SCOPE

7.1 CONCLUSION

DIGIFRAME helps the user to be updated and efficient as:

DIGIFRAME gives the user information at the right time and at the right

place. The user is able to control a remote display device with a Hybrid App.

The user can get real-time updates of the data.

The content can be viewed uniformly on any display device.

31

7.2 FUTURE SCOPE

1. Multiuser support

A login id and password will be provided to the user. Which would be needed to

access the mobile app, this would add security features to DIGIFRAME as well as

multiple users can access as unauthenticated user can’t use the hybrid app.

2. Various file type support

Currently for image module, only JPEG format is supported. Images come in various

format that is PNG, SVG, BMP, PSD, etc., to display these types of images provisions

could be made.

3. Preview before sending data

The actual display of data on remote display device is decided by the code written

inside raspberry pi, which can only be scene once the data is sent to the raspberry pi.

We can add the functionality to get a preview of data that would be displayed on the

remote display device.

32

REFERENCES

[1] www.academia.edu/download/45881427/Internet_of_Things_A_Survey_on_Enabling_
Technologies__Protocols__and_Applications.pdf

[2] http://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/everything-for-
cities.pdf

[3] https://www.slideshare.net/GaneshGani5/wireless-e-notice-board

[4] https://www.slideshare.net/Brijenderk/electronic-notice-board-using-raspberry-pi-and-
android-phone

[5] http://www.eclipse.org/paho/files/javadoc/index.html

[6] http://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe

[7] http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-
establishment

[8] http://programmingwithreason.com/article-mqtt-in-depth.html

[9] http://www.cs.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html#MQTT

[10] https://eclipse.org/paho/clients/java/

[11] https://www.eclipse.org/proposals/technology.mosquitto/

[12] https://en.wikipedia.org/wiki/Raspberry_Pi

[13] https://www.raspberrypi.org/documentation

[14] http://rest.elkstein.org/

33

http://rest.elkstein.org/
https://www.raspberrypi.org/documentation
https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.eclipse.org/proposals/technology.mosquitto/
https://eclipse.org/paho/clients/java/
http://www.cs.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html#MQTT
http://programmingwithreason.com/article-mqtt-in-depth.html
http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment
http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment
http://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
http://www.eclipse.org/paho/files/javadoc/index.html
https://www.slideshare.net/Brijenderk/electronic-notice-board-using-raspberry-pi-and-android-phone
https://www.slideshare.net/Brijenderk/electronic-notice-board-using-raspberry-pi-and-android-phone
https://www.slideshare.net/GaneshGani5/wireless-e-notice-board
http://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/everything-for-cities.pdf
http://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/everything-for-cities.pdf
http://www.academia.edu/download/45881427/Internet_of_Things_A_Survey_on_Enabling_Technologies__Protocols__and_Applications.pdf
http://www.academia.edu/download/45881427/Internet_of_Things_A_Survey_on_Enabling_Technologies__Protocols__and_Applications.pdf

PROJECT MEMBERS AND GUIDE INFORMATION

PROJECT TEAM MEMBERS

SR. NAME OF CONTACT EMAIL-ID
NO. STUDENT NO.

1 K. BHAGYASHREE
RAO

9561471259 kbhagyashree.rao@gmail.com

2 TEJAS WAJE 8888444854 wajetejas@gmail.com

3 VAISHNAVI DHOKE 8805612838 vaishnavidhoke@gmail.com

4 ADITYA LALWANI 9960272263 adityalalwani05@gmail.com

PROJECT GUIDE

NAME CONTACT NO. E-MAIL ID

PROF. VAIBHAV +919890977613 vabartday@gmail.com
DESHPANDE

PROJECT MENTOR

NAME CONTACT NO. E-MAIL ID

RAHUL DHOTE +919096569507 r.rahuldhote@gmail.com

34

